利用 CNN 对 ECG 心电信号进行心拍分类(pytorch)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from __future__ import print_function
import torch
import math
import torch.utils.data
import pandas as pd
import os
import datetime
import torch.utils.data
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from torch import nn, optim
from torch.utils.data.dataset import Dataset
import wfdb
import pywt
import seaborn
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix

torch.set_default_tensor_type(torch.DoubleTensor)

# 是否用
is_cuda = False
num_epochs = 100
batch_size = 10
torch.manual_seed(123)
in_channels_ = 1
num_classes = 12
allow_label_leakage = True

device = torch.device("cuda:2" if is_cuda else "cpu")

list_target = []

# 测试集在数据集中所占的比例
RATIO = 0.3

data_path = "data/mit-bih-arrhythmia-database-1.0.0"

ecg_all_class_set = []
count_number_of_class = {'+': 0, 'N': 0, 'A': 0, 'V': 0, '~': 0, '|': 0, 'Q': 0}


# 读取心电数据和对应标签,并对数据进行小波去噪
def getDataSet(number, X_data, Y_data):
ecgClassSet = ['+', 'N', 'A', 'V', '~', '|', 'Q']

# 读取心电数据记录
print("正在读取 " + number + " 号心电数据...")
record = wfdb.rdrecord('data/mit-bih-arrhythmia-database-1.0.0/' + number, channel_names=['MLII'])
data = record.p_signal.flatten()
rdata = denoise(data=data)

# 获取心电数据记录中R波的位置和对应的标签
annotation = wfdb.rdann('data/mit-bih-arrhythmia-database-1.0.0/' + number, 'atr')
Rlocation = annotation.sample
Rclass = annotation.symbol
for c in Rclass:
if c not in ecg_all_class_set:
ecg_all_class_set.append(c)
# 去掉前后的不稳定数据
start = 10
end = 5
i = start
j = len(annotation.symbol) - end

# 因为只选择NAVLR五种心电类型,所以要选出该条记录中所需要的那些带有特定标签的数据,舍弃其余标签的点
# X_data在R波前后截取长度为300的数据点
# Y_data将NAVLR按顺序转换为01234
while i < j:
try:
lable = ecgClassSet.index(Rclass[i])
if Rlocation[i] - 1199 < 0 or Rlocation[i] + 2401 > Rlocation[len(Rlocation) - 1] or Rclass[
i] not in ecgClassSet:
i += 1
continue
x_train = rdata[Rlocation[i] - 1199:Rlocation[i] + 2401]
X_data.append(x_train)
Y_data.append(lable)
temp_class = Rclass[i]
print(count_number_of_class[temp_class])
count_number_of_class[temp_class] = count_number_of_class[temp_class] + 1
i += 1
except ValueError:
i += 1
return


# 小波去噪预处理
def denoise(data):
# 小波变换
coeffs = pywt.wavedec(data=data, wavelet='db5', level=9)
cA9, cD9, cD8, cD7, cD6, cD5, cD4, cD3, cD2, cD1 = coeffs

# 阈值去噪
threshold = (np.median(np.abs(cD1)) / 0.6745) * (np.sqrt(2 * np.log(len(cD1))))
cD1.fill(0)
cD2.fill(0)
for i in range(1, len(coeffs) - 2):
coeffs[i] = pywt.threshold(coeffs[i], threshold)

# 小波反变换,获取去噪后的信号
rdata = pywt.waverec(coeffs=coeffs, wavelet='db5')
return rdata


# 加载数据集并进行预处理
def loadData():
numberSet = ['100', '101']
dataSet = []
lableSet = []
for n in numberSet:
getDataSet(n, dataSet, lableSet)

# 转numpy数组,打乱顺序
dataSet = np.array(dataSet).reshape(-1, 3600)
lableSet = np.array(lableSet).reshape(-1, 1)
print(dataSet.shape)
print(lableSet.shape)
train_ds = np.hstack((dataSet, lableSet))
np.random.shuffle(train_ds)

# 数据集及其标签集
X = train_ds[:, :3600].reshape(-1, 1, 3600)
Y = train_ds[:, 3600]

# 测试集及其标签集
shuffle_index = np.random.permutation(len(X))
test_length = int(RATIO * len(shuffle_index))
test_index = shuffle_index[:test_length]
train_index = shuffle_index[test_length:]
X_test, Y_test = X[test_index], Y[test_index]
X_train, Y_train = X[train_index], Y[train_index]
return X_train, Y_train, X_test, Y_test


def basic_layer(in_channels, out_channels, kernel_size, batch_norm=False, max_pool=True, conv_stride=1, padding=0
, pool_stride=2, pool_size=2):
layer = nn.Sequential(
nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=conv_stride,
padding=padding),
nn.ReLU()
)
if batch_norm:
layer = nn.Sequential(
layer,
nn.BatchNorm1d(num_features=out_channels)
)
if max_pool:
layer = nn.Sequential(
layer,
nn.MaxPool1d(kernel_size=pool_size, stride=pool_stride)
)
return layer


class mit_bih_classifier(nn.Module):
def __init__(self, in_channels=in_channels_):
super(mit_bih_classifier, self).__init__()
self.cnn = nn.Sequential(
basic_layer(in_channels=in_channels, out_channels=128, kernel_size=50, batch_norm=True,
max_pool=True, conv_stride=3, pool_stride=3, pool_size=2),
basic_layer(in_channels=128, out_channels=32, kernel_size=7, batch_norm=True,
max_pool=True, conv_stride=1, pool_stride=2, pool_size=2),
basic_layer(in_channels=32, out_channels=32, kernel_size=10, batch_norm=False,
max_pool=False, conv_stride=1),
basic_layer(in_channels=32, out_channels=128, kernel_size=5, conv_stride=2, pool_stride=2,
max_pool=True, batch_norm=False),
basic_layer(in_channels=128, out_channels=256, kernel_size=15, conv_stride=1, pool_size=2,
max_pool=True, batch_norm=False),
basic_layer(in_channels=256, out_channels=512, kernel_size=5, conv_stride=1,
max_pool=False, batch_norm=False),
basic_layer(in_channels=512, out_channels=128, kernel_size=3, conv_stride=1,
max_pool=False, batch_norm=False),
nn.Flatten(),
nn.Linear(in_features=128 * 3 * 3, out_features=512),
nn.ReLU(),
nn.Dropout(p=.1),
nn.Linear(512, out_features=num_classes),
nn.Softmax(dim=1)
)

def forward(self, x):
return self.cnn(x)


class get_pytorch_dataset(Dataset):
def __init__(self, data, target, transforms_=None, ):
self.data = data
self.target = target
self.transforms = transforms_

def __getitem__(self, item):
return self.data[item], self.target[item]

def __len__(self):
return self.data.shape[0]


device = torch.device("cuda:2" if is_cuda else "cpu")
model = mit_bih_classifier().to(device).double()
lr = 0.0003

optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-3)
loss_fn = nn.CrossEntropyLoss()

X_train, Y_train, X_test, Y_test = loadData()
train_dataset = get_pytorch_dataset(X_train, Y_train)
test_dataset = get_pytorch_dataset(X_train, Y_train)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=10, shuffle=True)
# test_dataset = CustomDatasetFromCSV('./data/Arrhythmia_dataset.pkl')
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=10, shuffle=True)


def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = loss_fn(output.double(), target.long())

optimizer.zero_grad()
loss.backward()
optimizer.step()

train_loss += loss.item()
if batch_idx % 10 == 0:
print('训练回合: {} [{}/{} ({:.0f}%)]\t损失: {:.10f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100 * batch_idx / len(train_loader),
loss.item()))

print('====> 训练回合: {} 平均损失: {:.10f}'.format(
epoch, train_loss / len(train_loader.dataset)))


def test(epoch):
model.eval()
test_loss = 0
total_accuracy = 0.00000
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = loss_fn(output, target.long())
test_loss += loss.item()
# 准确率
prediction = torch.argmax(output, dim=1)
accuracy = (prediction == target).sum().float()
total_accuracy = total_accuracy + accuracy
print("========>predicted:", prediction)
print("========>target:", target)

print('整体测试集上的损失: {:.10f}'.format(test_loss))
test_loss /= len(test_loader.dataset)
print('整体测试集上的平均损失: {:.10f}'.format(test_loss))
print("整体测试集上的正确率: {:.10f}".format(total_accuracy / len(test_dataset)))


if __name__ == "__main__":
print(count_number_of_class)
print(ecg_all_class_set)
for epoch in range(1, num_epochs + 1):
train(epoch)
test(epoch)
print(len(list_target))

Code


利用 CNN 对 ECG 心电信号进行心拍分类(pytorch)
https://wonderhoi.com/2024/01/09/利用-CNN-对-ECG-心电信号进行心拍分类(pytorch)/
作者
wonderhoi
发布于
2024年1月9日
许可协议